Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-tert-Butyl-3-hydroxy-5-androstene-17carboxamide monohydrate

Jiang-Sheng Li,^a* Jim Simpson,^b Xiao-Jun Li,^c Xun Li^a and Peng-Mian Huang^a

^aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, and ^cSchool of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China

Correspondence e-mail: js_li@yahoo.com.cn

Received 1 June 2009; accepted 3 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.048; wR factor = 0.114; data-to-parameter ratio = 7.7.

In the title compound, $C_{24}H_{39}NO_2 H_2O$, the *A* and *C* rings of the pregnolene derivative sterol adopt chair conformations, with the *B* ring in a flattened chair conformation and the fivemembered ring in an envelope conformation twisted about the *C/D* ring junction. The *N-tert*-butylcarboxamide substituent is equatorial. The 3β -hydroxy H atom and one H atom of the water molecule are disordered over two positions with equal occupancies. In the crystal structure, $O-H\cdots O$ hydrogen bonds between the 3β -hydroxy groups of neighbouring molecules form dimers in the *bc* plane and these dimers are stacked along the *a* axis by additional $O-H\cdots O$ hydrogen bonds involving the water molecules. The steric effect of the bulky *tert*-butyl substituent in the carboxamide chain precludes hydrogen-bond formation by the N-H group.

Related literature

The title compound is an intermediate in the synthesis of finasteride (Li *et al.*, 2001). For pharmaceutical applications of finasteride, systematic name N-(*tert*-butyl)-3-oxo-4-aza-5-androst-1-ene-17-carboxamide, see: Rasmusson *et al.* (1984, 1986); Rasmusson & Reynold (1985); US National Library of Medicine and National Institutes of Health (2008). For pregnenolone and its derivatives, see: Finar (1959). For the preparation of the title compound, see: Rasmusson *et al.* (1984); Dolling *et al.* (1999). For related structures, see: Bordner *et al.* (1978); Lancaster *et al.* (2007); Duax *et al.* (1989); Shukla *et al.* (2008). For ring puckering analysis, see: Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data $C_{24}H_{39}NO_2 \cdot H_2O$ $M_r = 391.58$ Monoclinic, C2 a = 9.934 (6) Å b = 7.469 (5) Å c = 30.647 (18) Å $\beta = 91.547$ (10)°

Data collection

```
Bruker SMART 1K CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.971, T<sub>max</sub> = 0.989
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.114$ S = 1.072146 reflections 277 parameters 7 restraints 4186 measured reflections 2146 independent reflections 1735 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$

V = 2273 (2) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.30 \times 0.15 \ \mathrm{mm}$

 $\mu = 0.07 \text{ mm}^-$

T = 293 K

Z = 4

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.18~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.15~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1OA···O1 ⁱ	0.821 (11)	1.99 (4)	2.783 (6)	161 (10)
$O1-H1OB\cdots O1W^{ii}$	0.819 (11)	2.31 (9)	2.756 (5)	115 (8)
$O1W - H1W \cdot \cdot \cdot O1W^{i}$	0.847 (11)	2.26 (6)	2.798 (9)	121 (6)
$O1W - H2WA \cdots O1^{iii}$	0.850 (11)	1.93 (6)	2.756 (5)	163 (20)
Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1$	-x + 1, y, -z	z + 1; (ii)	$-x + \frac{1}{2}, y - \frac{1}{2},$	-z + 1; (iii)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2009).

We thank Professor J. Song, Professor L. G. Chen and Dr X. J. Wang, Tianjin University, for their help and also thank

Professor G. B. Jameson, Massey University, for useful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2238).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bordner, J., Hennessee, G. L. A. & Chandross, R. J. (1978). Cryst. Struct. Commun. 7, 513–515.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolling, U. H., McCauley, J. A. & Varsolona, R. J. (1999). Eur. Patent No. 655 458.
- Duax, W. L., Griffin, J. F., Strong, P. D. & Guan, Y. (1989). Acta Cryst. C45, 1433–1435.

- Finar, I. L. (1959). Organic Chemistry, Vol. 2, Stereochemistry and the Chemistry of Natural Products, 2nd ed., pp. 495–497. London: Longman. Lancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T.
- C. & Price, S. L. (2007). J. Pharm. Sci. **96**, 3419–3430.
- Li, X. J., Chen, L. G., Fang, F. & Wang, X. J. (2001). Chin. J. Pharm. 32, 236–238.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Rasmusson, G. H. & Reynold, G. F. (1985). Eur. Patent No. 0 155 096.
- Rasmusson, G. H., Reynold, G. F. & Utne, T. (1984). J. Med. Chem. 27, 1690–1701.
- Rasmusson, G. H., Reynold, G. F. & Utne, T. (1986). J. Med. Chem. 29, 2298–2315.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shukla, Y. J., Fronczek, F. R., Pawar, R. S. & Khan, I. A. (2008). Acta Cryst. E64, 01643–01644.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- US National Library of Medicine and National Institutes of Health (2008). http://www.nlm.nih.gov/medlineplus/druginfo/meds/a698016.html.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, o1507-o1508 [doi:10.1107/S1600536809020984]

N-tert-Butyl-3-hydroxy-5-androstene-17-carboxamide monohydrate

J.-S. Li, J. Simpson, X.-J. Li, X. Li and P.-M. Huang

Comment

Finasteride, systematic name *N*-(*tert*-butyl)-3-oxo-4-aza-5-androst-1-ene-17-carboxamide, is an azasteroid used in the treatment of both Benign Prostatic Hypertrophy and hair loss in the male adults (Rasmusson *et al.*, 1984,1986; Rasmusson & Reynold, 1985; US National Library of Medicine and National Institutes of Health, 2008). The title compound, (I), Fig. 1, is a derivative of pregnenolone (Finar, 1959) which crystallizes with a solvent water molecule and is a key intermediate in the synthesis of finasteride (Li *et al.*, 2001).

The A and C rings of the steroid skeleton (C1—C5, C10 and C8,C9,C11—C14) have chair conformations (Cremer & Pople, 1975) with atoms C3 and C10 - 0.668 (5) and 0.604 (5) Å from the C1,C2,C4,C5 plane (r.m.s. deviation 0.018 Å) and atoms C9 and C13 - 0.601 (4) and 0.701 (4) Å from the C8,C11,C12,C14 plane (r.m.s. deviation 0.011 Å). Ring B (C5—C10) has a flattened chair conformation with an r.m.s. deviation of 0.091 Å from the plane through atoms C5—C7,C9,C10 with atom C8 displaced 0.588 (4) Å from this plane. The five membered ring D (C13—C17) has an envelope conformation twisted about the C/D ring junction with atom C14 - 0.617 (5) Å from the plane through C13,C15—C17 (r.m.s. deviation 0.082 Å).

The close similarity between this molecule and pregnenolone is amply demonstrated by the fact that the structure overlays with that of pregnenolone (Lancaster *et al.*, 2007; refcode PREGOL01 in the Cambridge Structural Database, version 5.30, Feb. 2009; Allen, 2002) with an r.m.s. deviation of 0.111 Å. This deviation drops to 0.045 Å if the carbonyl O2 atom is omitted from the calculation, Fig. 2 (Macrae *et al.*, 2006). The C16—C17—C20—O2 torsion angle which defines the conformation of the carboxamide group with respect to the main skeleton is -26.9 (5) °, significantly greater than the values in the range -3.0 to 0.6 ° reported for pregnenolone itself (Bordner *et al.*, 1978; Lancaster *et al.*, 2007) but more comparable to those found in pregnenolone derivatives with substituents elsewhere on the steroid backbone (Duax *et al.*, 1989; Shukla *et al.*, 2008).

In the crystal structure O1—H1OA···O1 hydrogen bonds form dimers in the *bc* plane. O1W—H1W···O1W hydrogen bonds link pairs of water molecules, while O1—H1O···O1W and O1W—H2W···O1 interactions stack the dimers along *a* (Fig. 3). The amide N1—H1 group is not involved in hydrogen bonding interactions, presumably because of the shielding effect of the bulky *tert*-butyl substituents.

Experimental

The title compound was prepared from pregnenolone as previously described (Rasmusson *et al.*, 1984; Dolling *et al.*, 1999). A single-crystal of the title compound, suitable for X-ray analysis, was grown by slow evaporation of the solvent DMF/H2O (1:2 v:v).

Refinement

The H atoms bound to C were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.97–0.98Å for CH₂ and CH groups with $U_{iso}(H) = 1.2 U_{eq}(C)$, and 0.96 Å for CH₃ groups. The O—H and N—H hydrogen atoms were refined with their isotropic displacement parameters 1.2 $U_{eq}(O,N)$ for the O—H and N—H groups and 1.5 $U_{eq}(O)$ for the water molecule. Distances were constrained to 0.82 (1) Å for the O—H bond 0.85 (1) Å in the water molecule and 0.90 (1)Å for the N—H bond. The H1O atom on O1 and the H2W atom of the water molecule are each disordered over two positions with equal occupancies. This disorder leads to a close approach of the O1 atoms and their hydrogen atoms on adjacent molecules. The absolute configuration of (I) could not be determined and Friedel equivalents were averaged in the refinement. The chosen configuration was based on that of the pregnenolone precursor with C3 *S*, C8 *R*, C9 *S*, C10 *R*, C13 *S* and C14 *S*.

Figures

Fig. 1. View of the molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only one disorder component of the disordered O—H group and water molecule is shown.

Fig. 2. An overlay in Mercury (Macrae *et al.*, 2006) of the non-hydrogen atoms common to the structures of (I) and pregnenolone (Lancaster *et al.*, 2007).

Fig. 3. Crystal packing of (I) viewed approximately down the b axis. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted.

N-(*tert*-butyl)-3-hydroxy-10,13-dimethyl- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydo-1*H*-cyclopenta[α]phenanthrene-17-carboxamide monohydrate

ei ystat aata	
$C_{24}H_{39}NO_2 \cdot H_2O$	$F_{000} = 864$
$M_r = 391.58$	$D_{\rm x} = 1.144 { m Mg m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 734 reflections
a = 9.934 (6) Å	$\theta = 3.3 - 26.2^{\circ}$
b = 7.469 (5) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 30.647 (18) Å	T = 293 K
$\beta = 91.547 \ (10)^{\circ}$	Block, colourless
V = 2273 (2) Å ³	$0.40\times0.30\times0.15~mm$
Z = 4	

Crystal data

Data collection

Bruker SMART 1K CCD diffractometer	2146 independent reflections
Radiation source: fine-focus sealed tube	1735 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.971, T_{\max} = 0.989$	$k = -5 \rightarrow 8$
4186 measured reflections	$l = -32 \rightarrow 36$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_o^2) + (0.0584P)^2 + 0.5179P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.003$
2146 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
277 parameters	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
7 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0095 (13)

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.4428 (4)	0.2304 (5)	0.35592 (10)	0.0384 (9)	
H1A	0.4627	0.3396	0.3403	0.046*	

H1B	0.3577	0.1847	0.3443	0.046*
C3	0.3985 (3)	0.1094 (5)	0.42947 (10)	0.0379 (9)
Н3	0.3143	0.0565	0.4181	0.045*
01	0.3816 (3)	0.1542 (4)	0.47468 (8)	0.0467 (7)
H1OA	0.450 (6)	0.128 (13)	0.489 (3)	0.070* 0.5
H1OB	0.358 (10)	0.052 (5)	0.480 (3)	0.070* 0.5
C4	0.5102 (4)	-0.0249 (5)	0.42418 (11)	0.0374 (9)
H4A	0.5926	0.0222	0.4374	0.045*
H4B	0.4877	-0.1344	0.4394	0.045*
C5	0.5333 (3)	-0.0670 (5)	0.37715 (10)	0.0300 (8)
C6	0.5374 (3)	-0.2341 (5)	0.36342 (11)	0.0350 (8)
Н6	0.5238	-0.3239	0.3838	0.042*
C7	0.5621 (3)	-0.2899 (5)	0.31783 (11)	0.0346 (8)
H7A	0.4788	-0.3350	0.3048	0.042*
H7B	0.6269	-0.3871	0.3183	0.042*
C8	0.6145 (3)	-0.1399 (5)	0.28958 (10)	0.0273 (7)
H8	0.7102	-0.1216	0.2968	0.033*
C9	0.5391 (3)	0.0331 (4)	0.29865 (10)	0.0264 (7)
Н9	0.4435	0.0065	0.2933	0.032*
C10	0.5527 (3)	0.0933 (4)	0.34704 (10)	0.0268 (7)
C19	0.6913 (3)	0.1751 (5)	0.35760 (10)	0.0388 (9)
H19A	0.7037	0.1859	0.3887	0.058*
H19B	0.6969	0.2914	0.3444	0.058*
H19C	0.7602	0.0992	0.3463	0.058*
C11	0.5739 (4)	0.1816 (5)	0.26685 (10)	0.0365 (8)
H11A	0.6649	0.2223	0.2735	0.044*
H11B	0.5138	0.2819	0.2713	0.044*
C12	0.5642 (4)	0.1268 (5)	0.21887 (10)	0.0372 (9)
H12A	0.4708	0.1039	0.2106	0.045*
H12B	0.5963	0.2239	0.2009	0.045*
C13	0.6473 (3)	-0.0400 (5)	0.21091 (10)	0.0292 (8)
C18	0.7972 (3)	0.0009 (5)	0.21675 (12)	0.0404 (9)
H18A	0.8486	-0.1026	0.2090	0.061*
H18B	0.8169	0.0317	0.2467	0.061*
H18C	0.8204	0.0994	0.1983	0.061*
C14	0.5993 (3)	-0.1847 (4)	0.24156 (10)	0.0288 (8)
H14	0.5022	-0.1957	0.2357	0.035*
C15	0.6607 (4)	-0.3561 (5)	0.22482 (12)	0.0451 (10)
H15A	0.6081	-0.4594	0.2331	0.054*
H15B	0.7524	-0.3708	0.2360	0.054*
C16	0.6573 (4)	-0.3311 (6)	0.17535 (12)	0.0553 (11)
H16A	0.5903	-0.4094	0.1618	0.066*
H16B	0.7444	-0.3592	0.1635	0.066*
C17	0.6212 (4)	-0.1340 (6)	0.16646 (11)	0.0389 (9)
H17	0.5244	-0.1277	0.1596	0.047*
C20	0.6943 (4)	-0.0543 (6)	0.12881 (12)	0.0448 (10)
O2	0.8041 (3)	-0.1105 (5)	0.11812 (9)	0.0679 (10)
N1	0.6348 (3)	0.0865 (5)	0.10950 (9)	0.0459 (9)
H1N	0.553 (2)	0.120 (6)	0.1186 (12)	0.055*

C21	0.6855 (4)	0.1911 (7)	0.07302 (11)	0.0499 (11)	
C22	0.8179 (5)	0.2794 (9)	0.08648 (17)	0.0811 (16)	
H22A	0.8044	0.3557	0.1112	0.122*	
H22B	0.8501	0.3494	0.0626	0.122*	
H22C	0.8830	0.1889	0.0941	0.122*	
C23	0.5815 (5)	0.3306 (8)	0.06214 (15)	0.0794 (17)	
H23A	0.4980	0.2733	0.0540	0.119*	
H23B	0.6112	0.4024	0.0383	0.119*	
H23C	0.5686	0.4054	0.0871	0.119*	
C24	0.7039 (5)	0.0700 (9)	0.03397 (13)	0.0816 (17)	
H24A	0.7758	-0.0129	0.0402	0.122*	
H24B	0.7255	0.1410	0.0090	0.122*	
H24C	0.6221	0.0050	0.0280	0.122*	
O1W	0.3597 (4)	0.5303 (7)	0.49476 (16)	0.1038 (14)	
H1W	0.416 (6)	0.553 (13)	0.5152 (16)	0.156*	
H2WA	0.288 (15)	0.55 (3)	0.508 (7)	0.156*	0.50
H2WB	0.299 (18)	0.60 (2)	0.503 (8)	0.156*	0.50
C2	0.4264 (4)	0.2760 (5)	0.40398 (11)	0.0408 (9)	
H2A	0.5080	0.3323	0.4154	0.049*	
H2B	0.3527	0.3599	0.4070	0.049*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.049 (2)	0.037 (2)	0.0293 (18)	0.0108 (17)	0.0050 (15)	0.0067 (17)
C3	0.0364 (19)	0.046 (2)	0.0312 (18)	-0.0048 (18)	-0.0004 (13)	-0.0004 (17)
01	0.0488 (17)	0.061 (2)	0.0309 (14)	-0.0033 (15)	0.0086 (11)	-0.0015 (14)
C4	0.048 (2)	0.036 (2)	0.0277 (18)	-0.0011 (17)	0.0005 (15)	0.0079 (16)
C5	0.0281 (17)	0.032 (2)	0.0299 (17)	-0.0031 (15)	-0.0014 (13)	0.0066 (16)
C6	0.038 (2)	0.033 (2)	0.0345 (19)	-0.0038 (16)	0.0023 (14)	0.0095 (17)
C7	0.0400 (19)	0.0231 (19)	0.041 (2)	-0.0042 (15)	0.0028 (15)	0.0031 (16)
C8	0.0254 (16)	0.0282 (18)	0.0286 (17)	-0.0008 (15)	0.0034 (12)	0.0023 (15)
С9	0.0237 (15)	0.0247 (17)	0.0306 (17)	0.0005 (13)	0.0002 (12)	0.0023 (14)
C10	0.0296 (17)	0.0271 (18)	0.0237 (16)	0.0045 (14)	0.0023 (12)	0.0027 (14)
C19	0.0403 (19)	0.043 (2)	0.0332 (18)	-0.0118 (18)	0.0021 (14)	0.0019 (18)
C11	0.054 (2)	0.0279 (19)	0.0284 (18)	0.0077 (18)	0.0066 (15)	0.0042 (16)
C12	0.043 (2)	0.041 (2)	0.0278 (18)	0.0085 (17)	0.0038 (14)	0.0069 (17)
C13	0.0269 (17)	0.032 (2)	0.0288 (18)	-0.0008 (15)	0.0037 (13)	-0.0001 (16)
C18	0.0337 (19)	0.044 (2)	0.044 (2)	-0.0035 (17)	0.0026 (15)	0.0073 (18)
C14	0.0256 (16)	0.0274 (19)	0.0335 (18)	-0.0029 (14)	0.0020 (13)	-0.0041 (15)
C15	0.056 (2)	0.036 (2)	0.043 (2)	-0.0040 (19)	0.0084 (17)	-0.0065 (18)
C16	0.068 (3)	0.051 (3)	0.048 (2)	-0.007 (2)	0.0149 (19)	-0.014 (2)
C17	0.0376 (19)	0.049 (2)	0.0301 (18)	-0.0050 (18)	0.0024 (14)	-0.0062 (18)
C20	0.044 (2)	0.057 (3)	0.033 (2)	-0.001 (2)	0.0091 (16)	-0.007 (2)
02	0.062 (2)	0.089 (3)	0.0546 (18)	0.0252 (18)	0.0296 (14)	0.0116 (18)
N1	0.0422 (17)	0.064 (2)	0.0315 (16)	0.0094 (17)	0.0086 (13)	0.0049 (17)
C21	0.052 (2)	0.066 (3)	0.032 (2)	0.009 (2)	0.0086 (16)	0.004 (2)
C22	0.068 (3)	0.096 (4)	0.079 (3)	-0.017 (3)	0.000 (3)	0.010 (3)

C23 C24 O1W C2	0.088 (3) 0.106 (4) 0.076 (3) 0.049 (2)	0.095 (4) 0.100 (5) 0.106 (4) 0.041 (2)	0.056 (3) 0.039 (2) 0.131 (4) 0.0326 (19)	0.027 (3) 0.021 (4) 0.021 (3) 0.0135 (18)	0.019 (2) 0.013 (2) 0.019 (2) 0.0085 (15)	0.021 (3) -0.005 (3) -0.036 (3) -0.0001 (18)
Geometric param	neters (Å, °)					
C1-C2		1 525 (5)	C13—C	18	1 526	(5)
C1 - C10		1.525 (5)	C13-C	17	1.520	(5)
C1—H1A		0.9700	C18—H	[18A	0.960	0
C1—H1B		0.9700	С18—Н	[18B	0.960	0
C3—O1		1.440 (4)	С18—Н	[18C	0.960	0
C3—C2		1.499 (5)	C14—C	215	1.514	(5)
C3—C4		1.508 (5)	С14—Н	[14	0.980	0
С3—Н3		0.9800	C15—C	216	1.527	(5)
O1—H1OA		0.821 (11)	С15—Н	[15A	0.970	0
O1—H1OB		0.819 (11)	С15—Н	[15B	0.970	0
C4—C5		1.499 (5)	C16—C	217	1.537	(6)
C4—H4A		0.9700	С16—Н	[16A	0.970	0
C4—H4B		0.9700	С16—Н	[16B	0.970	0
C5—C6		1.318 (5)	С17—С	20	1.503	(5)
C5—C10		1.527 (5)	С17—Н	[17	0.980	0
С6—С7		1.485 (5)	C20—O	02	1.222	(4)
С6—Н6		0.9300	C20—N	11	1.337	(5)
С7—С8		1.517 (5)	N1—C2	21	1.465	(5)
С7—Н7А		0.9700	N1—H1	N	0.899	(10)
С7—Н7В		0.9700	C21—C	223	1.499	(6)
C8—C14		1.513 (4)	C21—C	24	1.515	(6)
С8—С9		1.522 (5)	C21—C	222	1.518	(6)
C8—H8		0.9800	С22—Н	122A	0.960	0
C9—C11		1.523 (5)	С22—Н	122B	0.960	0
C9—C10		1.552 (4)	С22—Н	122C	0.960	0
С9—Н9		0.9800	С23—Н	123A	0.960	0
C10—C19		1.533 (4)	С23—Н	I23B	0.960	0
C19—H19A		0.9600	С23—Н	123C	0.960	0
C19—H19B		0.9600	С24—Н	[24A	0.960	0
C19—H19C		0.9600	С24—Н	124B	0.960	0
C11—C12		1.527 (4)	С24—Н	[24C	0.960	0
C11—H11A		0.9700	01W—	H1W	0.847	(11)
C11—H11B		0.9700	01W—	H2WA	0.850	(11)
C12—C13		1.519 (5)	01W—	H2WB	0.850	(11)
C12—H12A		0.9700	С2—Н2	2A	0.970	0
C12—H12B		0.9700	C2—H2	2B	0.970	0
C13—C14		1.517 (5)				
C2-C1-C10		114.7 (3)	C14—C	C13—C17	100.0	(3)
C2—C1—H1A		108.6	C12—C	C13—C17	115.8	(3)
C10-C1-H1A		108.6	C18—C	C13—C17	109.5	(3)
C2—C1—H1B		108.6	С13—С	18—H18A	109.5	
C10—C1—H1B		108.6	С13—С	18—H18B	109.5	

H1A—C1—H1B	107.6	H18A—C18—H18B	109.5
O1—C3—C2	109.6 (3)	C13—C18—H18C	109.5
O1—C3—C4	111.3 (3)	H18A—C18—H18C	109.5
C2—C3—C4	110.4 (3)	H18B—C18—H18C	109.5
O1—C3—H3	108.5	C8—C14—C15	119.1 (3)
С2—С3—Н3	108.5	C8—C14—C13	114.8 (3)
С4—С3—Н3	108.5	C15—C14—C13	104.9 (3)
C3—O1—H1OA	110 (7)	C8—C14—H14	105.7
C3—O1—H1OB	92 (7)	C15—C14—H14	105.7
H1OA—O1—H1OB	85 (9)	C13—C14—H14	105.7
C5—C4—C3	112.0 (3)	C14—C15—C16	103.6 (3)
C5—C4—H4A	109.2	C14—C15—H15A	111.0
C3—C4—H4A	109.2	C16—C15—H15A	111.0
C5—C4—H4B	109.2	C14—C15—H15B	111.0
C3—C4—H4B	109.2	C16—C15—H15B	111.0
H4A—C4—H4B	107.9	H15A—C15—H15B	109.0
C6—C5—C4	120.8 (3)	C15—C16—C17	107.0 (3)
C6—C5—C10	122.9 (3)	C15—C16—H16A	110.3
C4—C5—C10	116.2 (3)	С17—С16—Н16А	110.3
C5—C6—C7	125.0 (3)	С15—С16—Н16В	110.3
С5—С6—Н6	117.5	С17—С16—Н16В	110.3
С7—С6—Н6	117.5	H16A—C16—H16B	108.6
C6—C7—C8	113.4 (3)	C20—C17—C16	113.6 (3)
С6—С7—Н7А	108.9	C20—C17—C13	115.0 (3)
С8—С7—Н7А	108.9	C16—C17—C13	104.2 (3)
С6—С7—Н7В	108.9	С20—С17—Н17	107.9
С8—С7—Н7В	108.9	С16—С17—Н17	107.9
H7A—C7—H7B	107.7	С13—С17—Н17	107.9
C14—C8—C7	111.4 (3)	O2—C20—N1	122.6 (4)
C14—C8—C9	109.2 (3)	O2—C20—C17	121.5 (4)
C7—C8—C9	110.2 (2)	N1—C20—C17	115.8 (3)
С14—С8—Н8	108.7	C20—N1—C21	126.9 (3)
С7—С8—Н8	108.7	C20—N1—H1N	118 (3)
С9—С8—Н8	108.7	C21—N1—H1N	115 (3)
C8—C9—C11	112.3 (2)	N1—C21—C23	106.9 (3)
C8—C9—C10	112.9 (3)	N1—C21—C24	109.6 (4)
C11—C9—C10	112.6 (3)	C23—C21—C24	109.7 (4)
С8—С9—Н9	106.1	N1—C21—C22	109.7 (3)
С11—С9—Н9	106.1	C23—C21—C22	110.2 (5)
С10—С9—Н9	106.1	C24—C21—C22	110.6 (4)
C5-C10-C1	108.4 (2)	C21—C22—H22A	109.5
C5-C10-C19	108.2 (3)	C21—C22—H22B	109.5
C1—C10—C19	109.8 (3)	H22A—C22—H22B	109.5
C5—C10—C9	109.9 (3)	C21—C22—H22C	109.5
C1—C10—C9	108.7 (2)	H22A—C22—H22C	109.5
C19—C10—C9	111.8 (2)	H22B—C22—H22C	109.5
С10—С19—Н19А	109.5	C21—C23—H23A	109.5
C10-C19-H19B	109.5	C21—C23—H23B	109.5
H19A—C19—H19B	109.5	H23A—C23—H23B	109.5

С10—С19—Н19С	109.5	С21—С23—Н23С	109.5
Н19А—С19—Н19С	109.5	H23A—C23—H23C	109.5
H19B—C19—H19C	109.5	H23B—C23—H23C	109.5
C9—C11—C12	114.3 (3)	C21—C24—H24A	109.5
C9—C11—H11A	108.7	C21—C24—H24B	109.5
C12—C11—H11A	108.7	H24A—C24—H24B	109.5
C9—C11—H11B	108.7	C21—C24—H24C	109.5
C12—C11—H11B	108.7	H24A—C24—H24C	109.5
H11A—C11—H11B	107.6	H24B—C24—H24C	109.5
C13—C12—C11	110.7 (3)	H1W—O1W—H2WA	98 (10)
C13—C12—H12A	109.5	H1W—O1W—H2WB	96 (10)
C11—C12—H12A	109.5	H2WA—O1W—H2WB	29 (10)
C13—C12—H12B	109.5	C3—C2—C1	110.1 (3)
C11—C12—H12B	109.5	С3—С2—Н2А	109.6
H12A—C12—H12B	108.1	C1—C2—H2A	109.6
C14—C13—C12	107.7 (2)	С3—С2—Н2В	109.6
C14—C13—C18	113.1 (3)	C1—C2—H2B	109.6
C12—C13—C18	110.5 (3)	H2A—C2—H2B	108.2
O1—C3—C4—C5	-177.4 (3)	C7—C8—C14—C15	-55.4 (4)
C2—C3—C4—C5	-55.4 (4)	C9—C8—C14—C15	-177.3 (3)
C3—C4—C5—C6	-129.1 (4)	C7—C8—C14—C13	179.1 (3)
C3—C4—C5—C10	51.6 (4)	C9—C8—C14—C13	57.1 (3)
C4—C5—C6—C7	-178.8 (3)	C12—C13—C14—C8	-60.6 (4)
C10—C5—C6—C7	0.5 (5)	C18—C13—C14—C8	61.8 (4)
C5—C6—C7—C8	13.3 (5)	C17—C13—C14—C8	178.2 (3)
C6—C7—C8—C14	-163.2 (3)	C12-C13-C14-C15	166.8 (3)
C6—C7—C8—C9	-41.8 (4)	C18—C13—C14—C15	-70.8 (4)
C14—C8—C9—C11	-49.4 (3)	C17—C13—C14—C15	45.5 (3)
C7—C8—C9—C11	-172.1 (3)	C8-C14-C15-C16	-165.9 (3)
C14—C8—C9—C10	-178.2 (3)	C13-C14-C15-C16	-35.7 (4)
C7—C8—C9—C10	59.2 (3)	C14—C15—C16—C17	11.1 (4)
C6—C5—C10—C1	133.6 (4)	C15-C16-C17-C20	142.5 (3)
C4—C5—C10—C1	-47.1 (4)	C15-C16-C17-C13	16.6 (4)
C6—C5—C10—C19	-107.5 (4)	C14—C13—C17—C20	-162.4 (3)
C4—C5—C10—C19	71.9 (3)	C12—C13—C17—C20	82.3 (4)
C6—C5—C10—C9	14.9 (4)	C18—C13—C17—C20	-43.4 (4)
C4—C5—C10—C9	-165.7 (3)	C14—C13—C17—C16	-37.4 (3)
C2-C1-C10-C5	49.6 (4)	C12—C13—C17—C16	-152.7 (3)
C2-C1-C10-C19	-68.4 (4)	C18—C13—C17—C16	81.6 (4)
C2—C1—C10—C9	169.1 (3)	C16—C17—C20—O2	-26.9 (5)
C8—C9—C10—C5	-44.6 (3)	C13—C17—C20—O2	93.0 (5)
C11—C9—C10—C5	-173.2 (3)	C16—C17—C20—N1	156.3 (3)
C8—C9—C10—C1	-163.0 (3)	C13—C17—C20—N1	-83.7 (4)
C11—C9—C10—C1	68.4 (3)	O2—C20—N1—C21	1.8 (6)
C8—C9—C10—C19	75.7 (3)	C17—C20—N1—C21	178.5 (4)
C11—C9—C10—C19	-52.9 (4)	C20—N1—C21—C23	178.2 (4)
C8—C9—C11—C12	50.1 (4)	C20—N1—C21—C24	59.4 (5)
C10—C9—C11—C12	179.0 (3)	C20—N1—C21—C22	-62.2 (6)
C9—C11—C12—C13	-53.5 (4)	O1—C3—C2—C1	-179.3 (3)

C11—C12—C13—C14	55.9 (4)	C4—C3—C2—C1	57.7 (4)
C11—C12—C13—C18	-68.1 (4)	C10-C1-C2-C3	-57.1 (4)
C11—C12—C13—C17	166.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
O1—H1OA···O1 ⁱ	0.821 (11)	1.99 (4)	2.783 (6)	161 (10)
O1W—H1W····O1W ⁱ	0.847 (11)	2.26 (6)	2.798 (9)	121 (6)
O1—H1OB…O1W ⁱⁱ	0.819 (11)	2.31 (9)	2.756 (5)	115 (8)
O1W—H2WA···O1 ⁱⁱⁱ	0.850 (11)	1.93 (6)	2.756 (5)	163 (20)
		1 10 1 10 11		

Symmetry codes: (i) -x+1, y, -z+1; (ii) -x+1/2, y-1/2, -z+1; (iii) -x+1/2, y+1/2, -z+1.

Fig. 2

Fig. 3

